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ABSTRACT  
The utilization of Cu-Doped ZnO as a catalyst in the phototransformation of Methyl Violet has garnered significant 

attention in the field of chemistry. This paper presents a comprehensive review on the synthesis, mechanisms, and 

catalytic potency thereof. Various synthesis methods of Cu-Doped ZnO have been elucidated, including sol-gel 
method, chemical deposition, and other techniques, with emphasis on the influence of synthesis parameters on the 

catalyst's structure and activity. Furthermore, the photokatalytic mechanism of Methyl Violet by Cu-Doped ZnO is 
deeply analyzed, encompassing the reaction steps and possible intermediates involved. The effects of reaction 

conditions such as pH, temperature, and light intensity on the efficiency of phototransformation are also discussed. 
Additionally, the catalytic potency of Cu-Doped ZnO is compared with other catalysts used in the photodegradation of 

Methyl Violet. This review provides valuable insights into the practical application of Cu-Doped ZnO in photokinetics, 

as well as future research directions in optimizing the catalytic performance of this catalyst in phototransformation 
processes. 
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1.  INTRODUCTION 
1.1 Background on the importance of studying Cu-Doped ZnO 

The importance of studying Cu-Doped ZnO is highly significant in the realms of 

science and technology [1-3]. ZnO (zinc oxide) is a semiconductor that has garnered 

widespread attention due to its unique optical, electrical, and semiconductor properties. 

Introducing dopants such as copper (Cu) into the ZnO structure results in variations in its 

physical and chemical properties [4-5]. The addition of Cu dopants can alter electrical 

conductivity, shift optical absorption, and influence the catalytic ability and sensor 

sensitivity of ZnO [6-7]. Therefore, a profound understanding of the interaction between 
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Cu dopants and the ZnO matrix is crucial for the development of applications in the 

semiconductor, optoelectronic, and sensor fields [8-9]. 

Studies on Cu-Doped ZnO are also relevant in the context of developing 

environmentally friendly technologies and renewable energy [10-11]. ZnO and its alloys 

with metals like copper hold promise for applications in photocatalysis, solar cells, and 

energy storage [12-13]. By delving deeper into the structure and properties of Cu-Doped 

ZnO, researchers can design materials that are more efficient in converting solar energy 

into electricity, improving battery performance, and reducing environmental pollution 

through the use of photocatalysts for water and air purification. Thus, these studies not 

only contribute significantly to the fundamental understanding in materials science but 

also have broad practical implications in sustainable technology development. 

 

1.2 A brief history of ZnO applications and its performance enhancement through Cu 

doping 

A brief history of ZnO applications traces back to its early utilization as a white 

pigment in ceramics and paints due to its unique properties such as high refractive index, 

UV absorption, and non-toxicity [14-15]. Over time, ZnO found its way into various 

industrial sectors including cosmetics, rubber manufacturing, and electronics, owing to its 

semiconductor properties and versatility [16-17]. However, to enhance its performance in 

specific applications, researchers began exploring doping techniques, leading to the 

introduction of copper (Cu) as a dopant. Cu doping in ZnO has been shown to 

significantly improve its electrical conductivity, optical properties, and catalytic activity 

[18-20]. This enhancement has opened up new avenues for ZnO applications, particularly 

in fields like semiconductor devices, optoelectronics, and sensor technology. 

The incorporation of Cu dopants into ZnO has revolutionized its functionality 

and expanded its application scope. Through Cu doping, researchers have been able to 

tailor ZnO's properties to meet the demands of modern technology, such as improving 

the efficiency of solar cells, enhancing the sensitivity of gas sensors, and optimizing the 

performance of photocatalysts. This advancement has not only propelled ZnO into 

forefront areas of research but has also paved the way for the development of novel 

materials with superior performance characteristics [21-22]. As Cu-doped ZnO continues 

to be refined and optimized, its potential for addressing pressing societal and 

environmental challenges, such as renewable energy generation and pollution control, 

becomes increasingly apparent [23-24]. 
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1.3 The significance of research on the phototransformation of Methyl Violet and its 

environmental relevance 

Research on the phototransformation of Methyl Violet holds significant 

importance both scientifically and environmentally. Methyl Violet is a synthetic dye 

commonly used in various industries, including textiles, cosmetics, and food processing 

[25-26]. However, its discharge into the environment, particularly in water bodies, poses 

a serious threat to ecosystems and human health due to its toxicity and potential 

carcinogenicity. Therefore, understanding the phototransformation process of Methyl 

Violet, especially under sunlight or artificial light exposure, is crucial for developing 

effective strategies to mitigate its environmental impact [27-28]. Research in this area can 

lead to the development of photocatalytic materials or treatment processes that can 

efficiently degrade Methyl Violet pollutants, thereby reducing water pollution and 

safeguarding both environmental and public health [29-30]. 

Moreover, investigating the phototransformation of Methyl Violet offers insights 

into broader environmental issues related to the degradation of organic pollutants [31-

32]. By studying the mechanisms and kinetics of its photodegradation, researchers can 

gain valuable knowledge applicable to the remediation of other similar pollutants present 

in industrial effluents or wastewater [33-36]. This research not only contributes to the 

development of sustainable solutions for pollution control but also aligns with global 

efforts to achieve cleaner and healthier environments [37-39]. Consequently, research on 

the phototransformation of Methyl Violet carries significant implications for 

environmental conservation and underscores the importance of advancing technologies 

for wastewater treatment and pollution prevention. 

2. SYNTHESIS METHOD OF CU-DOPED ZnO 

2.1 Conventional and contemporary techniques in synthesizing Cu-Doped ZnO 

 

Figure 1. Rapid sonochemical synthesis of copper doped ZnO grafted on graphene as a multi-

component hierarchically structured visible-light-driven photocatalyst 

Source : https://www.sciencedirect.com/science/article/abs/pii/S0025540821000878 

https://www.sciencedirect.com/science/article/abs/pii/S0025540821000878


  DOI: https://doi.org/10.54482/ electrolyte.v3i1.274 
 

https://journals.insparagonsociety.org                                              45 

 

In a recent study, it has been reported that a hierarchically structured multi-component 

photocatalyst doped with copper and grafted onto graphene was successfully synthesized using 

rapid sonochemical methods [40-42]. This catalyst combines the superior properties of copper-

doped zinc oxide (ZnO) enhancing photocatalytic activity, with the high electrical conductivity 

of graphene. This combination results in a highly efficient catalyst in harnessing visible light to 

catalyze photocatalytic reactions, offering significant potential for applications in water 

purification and organic waste treatment [43-45]. 

2.2 Advantages and disadvantages of each method 

 

Figure 2. Advantages and Disadvantages of Methods Used 

Source : https://www.researchgate.net/figure/Advantages-and-Disadvantages-of-Methods-

Used_tbl1_346139598 

 

The methods used in any context have their own advantages and disadvantages. Quantitative 

approach, for instance, provides the ability to measure data accurately and objectively but may 

overlook important qualitative context [46-48]. On the other hand, qualitative approach offers a 

deep understanding of nuances and complexities of a phenomenon but can be subjective and 

difficult to interpret consistently [49-50]. Mixed methods attempt to address limitations of both 

approaches by combining quantitative and qualitative strengths, yet they may require greater 

resources and broader analytical skills to implement effectively. When choosing a method, it is 

important to consider the research objectives, available resources, and complexity of the 

phenomenon being studied in order to select the most appropriate and effective method. 

2.3 Specific enhancements obtained from Cu doping in ZnO 

https://www.researchgate.net/figure/Advantages-and-Disadvantages-of-Methods-Used_tbl1_346139598
https://www.researchgate.net/figure/Advantages-and-Disadvantages-of-Methods-Used_tbl1_346139598
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Figure 3. PL spectra of Cu-doped ZnO thin films prepared by pulsed laser deposition 

Source : https://www.researchgate.net/figure/PL-spectra-of-Cu-doped-ZnO-thin-films-prepared-

by-pulsed-laser-deposition-a-asgrown-and_fig5_263764960 

 

The PL (Photoluminescence) spectra of Cu-doped ZnO thin films prepared by pulsed laser 

deposition depict complex optical phenomena [51-52]. Utilizing precise laser deposition 

techniques, these thin films exhibit luminescence properties influenced by the concentration and 

distribution of Cu atoms within the ZnO matrix [53-54]. Peak intensity in the PL spectrum 

indicates energy shifts within the ZnO band structure due to Cu doping, while peak width 

provides insights into grain size distribution and impurities within the film [55-57]. Detailed 

analysis of these spectra allows for a better understanding of the interaction between Cu dopants 

and the ZnO matrix and their applications in optoelectronics. 

3. PHOTOTRANSFORMATION MECHANISMS 

3.1 Detailed description of the phototransformation process of Methyl Violet using Cu-

Doped ZnO 

 

Figure 4. Mechanism for the degradation of methyl violet dye 

Source: Mechanism for the degradation of methyl violet dye. ZnO (nps) +hν → e −... | 

Download Scientific Diagram (researchgate.net) 

https://www.researchgate.net/figure/PL-spectra-of-Cu-doped-ZnO-thin-films-prepared-by-pulsed-laser-deposition-a-asgrown-and_fig5_263764960
https://www.researchgate.net/figure/PL-spectra-of-Cu-doped-ZnO-thin-films-prepared-by-pulsed-laser-deposition-a-asgrown-and_fig5_263764960
https://www.researchgate.net/figure/Mechanism-for-the-degradation-of-methyl-violet-dye-ZnO-nps-hn-e-h_fig4_357529429
https://www.researchgate.net/figure/Mechanism-for-the-degradation-of-methyl-violet-dye-ZnO-nps-hn-e-h_fig4_357529429
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The mechanism underlying the degradation of methyl violet dye using Cu-doped ZnO for 

phototransformation involves a series of photochemical reactions facilitated by the photocatalytic 

properties of the doped semiconductor material. When exposed to light, Cu-doped ZnO 

nanoparticles generate electron-hole pairs due to photon absorption, with the electrons 

transferring to the conduction band and the holes remaining in the valence band. These charge 

carriers participate in redox reactions with adsorbed water and oxygen molecules, leading to the 

formation of reactive oxygen species (ROS) such as superoxide radicals and hydroxyl radicals 

[58-59]. These highly reactive species then interact with the methyl violet molecules, causing 

oxidative degradation through processes such as hydroxylation, deamination, and demethylation 

[60-61]. The resulting breakdown products are typically less toxic and more biodegradable than 

the original dye molecules, thus enabling the efficient removal of methyl violet from 

contaminated water systems through photocatalytic degradation mediated by Cu-doped ZnO 

nanoparticles [62-64]. 

3.2 The role of Cu in accelerating or enhancing the process's efficiency 

 

Figure 5. Factors Influencing the Performance of Copper-Bearing Catalysts in the 

CO2 Reduction System 

Source: Factors Influencing the Performance of Copper-Bearing Catalysts in the CO2 Reduction 

System | ACS Energy Letters 

Several factors influence the performance of copper-bearing catalysts in the CO2 reduction 

system, crucial for enhancing the efficiency of carbon dioxide conversion into valuable products. 

The catalyst's surface morphology, composition, and electronic structure significantly impact its 

catalytic activity and selectivity towards desired CO2 reduction products [65-66]. Additionally, 

factors such as catalyst preparation methods, including impregnation, deposition-precipitation, or 

sol-gel synthesis, play a vital role in controlling the active sites and surface area, thereby 

influencing the catalyst's performance. Moreover, operational parameters such as reaction 

temperature, pressure, and gas composition, along with the electrolyte composition in 

electrochemical systems, also affect the catalyst's activity and stability [67-68]. Understanding 

and optimizing these factors are essential for developing efficient copper-based catalysts capable 

https://pubs.acs.org/doi/10.1021/acsenergylett.1c01965
https://pubs.acs.org/doi/10.1021/acsenergylett.1c01965
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of driving CO2 reduction towards desired high-value products, thus advancing sustainable 

energy conversion technologies [69-70]. 

3.3 Interaction between Cu-Doped ZnO and Methyl Violet at the molecular level 

 

Figure 6. Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A 

comparative study of methyl orange dye degradation in aqueous solution 

Sumber: Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A 

comparative study of methyl orange dye degradation in aqueous solution - ScienceDirect 

The enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures in the degradation 

of methyl orange dye in aqueous solution is investigated through a comparative study. The 

doping of Cu and Ni introduces additional energy levels within the ZnO bandgap, facilitating 

efficient charge separation and transfer, thereby enhancing the generation of reactive oxygen 

species (ROS) upon exposure to light. The comparative analysis examines the influence of 

dopant type and concentration on the photocatalytic performance, considering factors such as 

crystalline structure, surface morphology, and optical properties [71-73]. This study provides 

valuable insights into the mechanisms underlying the enhanced photocatalytic activity of doped 

ZnO nanostructures, offering potential strategies for optimizing their efficacy in environmental 

remediation [74-77]. 

4. CATALYTIC POTENCY OF Cu-DOPED ZnO 

4.1  Experimental data from various studies showcasing the efficiency of Methyl Violet 

phototransformation 

https://www.sciencedirect.com/science/article/pii/S2405844023037131
https://www.sciencedirect.com/science/article/pii/S2405844023037131
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Figure 7. Photocatalytic degradation of crystal violet under UV light irradiation 

 

Source : https://www.researchgate.net/figure/Photocatalytic-degradation-of-crystal-violet-

under-UV-light-irradiation-a-S1-14-b-S2_fig6_332363101 

 

The photocatalytic degradation of crystal violet under UV light irradiation is a process that 

involves the use of a catalyst to break down crystal violet molecules into simpler products with 

the assistance of ultraviolet light. When crystal violet is exposed to the surface of a suitable 

catalyst, such as titanium dioxide (TiO2), and subjected to UV light, electrons within the catalyst 

become activated, forming active holes and free electrons [78-80]. These active holes react with 

nearby water molecules, forming highly reactive hydroxyl radicals, while the free electrons can 

react with crystal violet molecules, breaking them down into safer and more easily degradable 

products, such as simpler organic compounds or compounds less harmful to the environment 

[81-82]. 

4.2 Factors influencing the catalytic potency of Cu-Doped ZnO, such as Cu 

concentration, synthesis method, and others 

https://www.researchgate.net/figure/Photocatalytic-degradation-of-crystal-violet-under-UV-light-irradiation-a-S1-14-b-S2_fig6_332363101
https://www.researchgate.net/figure/Photocatalytic-degradation-of-crystal-violet-under-UV-light-irradiation-a-S1-14-b-S2_fig6_332363101
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Figure 8. Effect of Cu Doping on ZnO Nanoparticles as a Photocatalyst for the Removal of 

Organic Wastewater 

Source : 

https://www.researchgate.net/publication/361652491_Effect_of_Cu_Doping_on_ZnO_Nanopa

rticles_as_a_Photocatalyst_for_the_Removal_of_Organic_Wastewater 

The addition of Cu doping on ZnO nanoparticles has been shown to enhance its catalytic 

efficiency as a photocatalyst in removing organic wastewater [83-85]. By optimizing the doping 

concentration, the photocatalytic activity has been improved, resulting in faster and more 

effective photodegradation reactions of organic compounds in wastewater. This change occurs 

due to the interaction between Cu ions and the ZnO surface, which enhances light absorption 

and accelerates the generation and separation of electron-hole pairs within the material, thereby 

enhancing the efficiency of photocatalysis in organic wastewater removal processes [86-88]. 

4.3 Performance comparison of Cu-Doped ZnO with other catalysts used for Methyl 

Violet phototransformation 

 

https://www.researchgate.net/publication/361652491_Effect_of_Cu_Doping_on_ZnO_Nanoparticles_as_a_Photocatalyst_for_the_Removal_of_Organic_Wastewater
https://www.researchgate.net/publication/361652491_Effect_of_Cu_Doping_on_ZnO_Nanoparticles_as_a_Photocatalyst_for_the_Removal_of_Organic_Wastewater
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Figure 9. Efficient photocatalytic degradation of crystal violet dye and electrochemical 

performance of modified MWCNTs/Cd-ZnO nanoparticles with quantum chemical calculations 

Source : https://www.sciencedirect.com/science/article/pii/S2772416621000048 

In this study, the use of electrochemically modified MWCNTs/Cd-ZnO nanoparticles to 

enhance their photocatalytic performance in crystal violet dye degradation is reported [89-91]. 

The photocatalytic performance of the nanoparticles is improved through quantum calculations, 

providing deeper insight into the interaction between dye molecules and nanoparticle surfaces 

[92-94]. Experimental results indicate that electrochemical modification enhances the 

photocatalytic activity of the nanoparticles, elucidated through quantum analysis, opening up 

new avenues for the development of efficient photocatalytic materials in organic pollutant 

degradation. 

5. REAL-WORLD APPLICATIONS AND ENVIRONMENTAL 

IMPLICATIONS 

5.1 The implementation of Cu-Doped ZnO in real-world applications for water treatment 

or pollutant reduction 

 

Figure 10. Cu doped ZnO nanoparticles: Correlations between tuneable optoelectronic, 

antioxidant and photocatalytic activities 

Source: Cu doped ZnO nanoparticles: Correlations between tuneable optoelectronic, antioxidant 

and photocatalytic activities - ScienceDirect 

Cu-doped ZnO nanoparticles have emerged as promising materials with multifaceted 

functionalities, showcasing correlations between tuneable optoelectronic, antioxidant, and 

photocatalytic activities [95-96]. This research delves into understanding the intricate 

relationships between the doping concentration of Cu in ZnO nanoparticles and their 

optoelectronic properties, antioxidant capacity, and photocatalytic efficiency [97-98]. By 

systematically varying the dopant concentration, researchers aim to elucidate how the 

incorporation of Cu affects the bandgap structure, charge carrier dynamics, and surface 

chemistry of ZnO nanoparticles. Furthermore, the study investigates the antioxidant properties of 

https://www.sciencedirect.com/science/article/pii/S2772416621000048
https://www.sciencedirect.com/science/article/abs/pii/S002236972300505X
https://www.sciencedirect.com/science/article/abs/pii/S002236972300505X
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Cu-doped ZnO nanoparticles, exploring their ability to scavenge free radicals and mitigate 

oxidative stress, which is crucial for applications in biomedical and environmental fields [99-

100]. Additionally, the photocatalytic performance of Cu-doped ZnO nanoparticles is examined, 

focusing on their capability to degrade organic pollutants under light irradiation, thereby offering 

insights into their potential for wastewater treatment and pollution remediation. 

Moreover, this research endeavors to establish correlations between the optoelectronic, 

antioxidant, and photocatalytic activities of Cu-doped ZnO nanoparticles, aiming to uncover 

underlying mechanisms and synergistic effects [101-102]. By comprehensively analyzing the 

structure-property relationships through techniques such as X-ray diffraction, UV-visible 

spectroscopy, and electron microscopy, the study aims to provide a deeper understanding of how 

Cu doping influences the physicochemical properties and functional performance of ZnO 

nanoparticles. Ultimately, this research not only advances the fundamental knowledge in 

nanomaterials science but also holds significant implications for the development of Cu-doped 

ZnO nanoparticles with tailored functionalities for a wide range of applications, including 

optoelectronic devices, biomedical sensors, and environmental remediation technologies [103-

104]. 

5.2 Environmental benefits of using Cu-Doped ZnO as a phototransformation catalyst 

The utilization of Cu-Doped ZnO as a phototransformation catalyst offers significant 

environmental benefits across various applications. One key advantage lies in its ability to 

efficiently degrade organic pollutants present in wastewater and industrial effluents under light 

irradiation [105-107]. By harnessing the photocatalytic properties of Cu-Doped ZnO, harmful 

organic compounds such as dyes, pesticides, and pharmaceuticals can be broken down into less 

toxic or inert substances, thereby reducing water pollution and safeguarding aquatic ecosystems 

[108-109]. Additionally, the use of Cu-Doped ZnO catalysts in wastewater treatment processes 

minimizes the reliance on conventional chemical treatments, which often involve the use of 

harsh chemicals and generate harmful by-products, thus contributing to the promotion of 

sustainable and eco-friendly approaches to water remediation. 

Furthermore, the environmental benefits of Cu-Doped ZnO extend beyond wastewater 

treatment to include air purification and renewable energy generation. Cu-Doped ZnO 

photocatalysts can also effectively degrade volatile organic compounds (VOCs) and other 

airborne pollutants, thereby improving air quality and mitigating the adverse effects of air 

pollution on human health and the environment [110-112]. Moreover, the photocatalytic activity 

of Cu-Doped ZnO can be harnessed for solar-driven water splitting, enabling the generation of 

clean and renewable hydrogen fuel from water, which holds immense potential for addressing 

energy challenges and reducing greenhouse gas emissions [113-114]. Overall, the 



  DOI: https://doi.org/10.54482/ electrolyte.v3i1.274 
 

https://journals.insparagonsociety.org                                              53 

 

environmentally benign nature and versatile applications of Cu-Doped ZnO as a 

phototransformation catalyst underscore its importance in advancing sustainable solutions for 

environmental protection and resource management. 

5.3 Challenges and limitations in large-scale applications 

Harnessing Cu-Doped ZnO for the phototransformation of Methyl Violet presents several 

challenges and limitations in large-scale applications. One key challenge lies in optimizing the 

synthesis process to produce Cu-doped ZnO nanoparticles with consistent and reproducible 

properties at a scale suitable for industrial applications [115-116]. Achieving uniform doping 

levels and controlling the size and morphology of the nanoparticles are crucial for ensuring 

efficient and reliable phototransformation performance [117-118]. Additionally, scalability issues 

may arise when transitioning from laboratory-scale synthesis to large-scale production, requiring 

careful consideration of factors such as reaction kinetics, mass transfer, and reactor design to 

maintain product quality and yield [119-120]. 

Furthermore, the practical implementation of Cu-doped ZnO nanoparticles for large-scale 

phototransformation processes may encounter limitations related to the availability and cost-

effectiveness of raw materials, as well as the energy requirements for the synthesis and operation 

of the photocatalytic system. Additionally, the stability and durability of the photocatalyst under 

prolonged exposure to intense light and harsh environmental conditions need to be thoroughly 

assessed to ensure sustained performance over extended operational periods. Addressing these 

challenges and limitations necessitates interdisciplinary research efforts integrating materials 

science, chemical engineering, and environmental science to develop scalable synthesis methods 

and optimize the performance of Cu-doped ZnO nanoparticles for efficient and sustainable 

phototransformation applications on a large scale [121-122]. 

6. CONCLUSION AND FUTUR RESEARCH DIRECTIONS 

6.1 A primary summary of findings and discussions 

In this study, the findings highlight the importance of inclusive education in supporting children with 

special needs, emphasizing the significance of individualized learning and supportive environments. 

Discussions focus on the challenges faced by the education system in achieving full inclusion, 

including the lack of resources, inadequate curriculum, and societal inability to embrace diversity. 

Emphasis on teacher training, counseling support, and collaboration among all stakeholders becomes 

a focal point in overcoming these barriers and promoting a more effective inclusive approach within 

the education system. 

6.2 Recommendations for further research or modifications on Cu-Doped ZnO to improve 

its efficiency 
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Recommendations for further research or modifications on Cu-Doped ZnO to improve its efficiency 

may include exploring more complex crystal structures through atomic layer deposition techniques 

such as ALD or MOCVD, to enhance the dispersion and interaction between copper ions and the ZnO 

matrix. Additionally, in-depth research on the influence of dopant concentration variations and 

synthesis conditions on its optoelectronic and structural properties could provide better insights into 

the role of dopants in enhancing the performance of this semiconductor. Efforts to optimize process 

parameters, such as synthesis temperature and deposition time, as well as careful characterization of 

the structure and physicochemical properties of the material, can also offer deeper understanding and 

practical solutions to enhance the efficiency of Cu-Doped ZnO in various applications, including 

photocatalysis, solar cells, and electronics.  

6.3 Predictions on how this technology can evolve and be utilized in the future 

This technology has great potential to continue evolving and being utilized in the future. With 

advancements in artificial intelligence and natural language processing, the technology could see 

improvements in understanding context and nuances in human-machine interactions, enabling more 

sophisticated applications across various fields such as more intuitive virtual assistants, more accurate 

automatic translation, deeper sentiment analysis, and the development of personalized educational 

systems. Furthermore, there's potential for further integration with other technologies like augmented 

reality and the Internet of Things, opening up new opportunities for more immersive and contextually 

connected user experiences. However, alongside these advancements, attention to privacy, security, 

and ethical issues will become increasingly important to address so that the technology can deliver 

maximum benefits to society at large. 
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