



## Computation Study of *Jatropha Curcas L.* Leaves

Hana Safitri, Fadhillah Hijri<sup>a</sup>, Mawaddatul Khairi<sup>b</sup>, Fatimah Zahra <sup>c</sup>, Nadia Marsila<sup>d</sup>

Magister Programme of Biochemistry, Postgraduate, Central Luzon State University, Nueva Ecija, Philippines

<sup>a</sup>Department of Chemistry, Faculty of Mathematics and Science, Universitas Negeri Padang, JL. Prof. Dr. Hamka, Air Tawar Barat, Padang Utara, Indonesia, 25171 Indonesia

<sup>b</sup>Department of Medicine, Faculty of Medicine, Universitas Andalas, JL Limau Manis, 15175 Indonesia

<sup>c</sup>Department of Informatics, Faculty of Engineering, Universitas Negeri Padang, JL. Prof. Dr. Hamka, Air Tawar Barat, Padang Utara, Indonesia, 25171 Indonesia

<sup>d</sup>Magister Programme of Educational Chemistry, Postgraduate, Universitas Negeri Padang, JL. Prof. Dr. Hamka, Air Tawar Barat, Padang Utara, Indonesia, 25171 Indonesia

\*Corresponding email: fadilahhijri95@gmail.com

### ABSTRACT

Fever is a condition when the body temperature increases to more than 380C. Fever indicates the presence of a disease or other condition in the body. Fever generally occurs as a reaction of the immune system to fight viral, bacterial, fungal, or parasitic infections that cause disease. Some of the diseases that often cause fever are flu, sore throat, and urinary tract infections. Fever can happen to anyone, starting from baby, children, to adults. This disease can be cured by using drugs that contain antipyretics, analgesics and anti-inflammatory. *Jatropha* leaves contain active compounds in the form of flavonoids which contain antipyretics, analgesics, and anti-inflammatory properties. Here will be explained about the content of *jatropha* leaves which can be used as a medicine for fever.

**Keywords:** fever, flavonoids, antipyretics, analgesics, anti-inflammatory

## 1. INTRODUCTION

Fever is an increase in body temperature characterized by an increase in the threshold point for heat regulation of the hypothalamus[1][2]. The hypothalamus heat regulation/regulatory center controls body temperature by balancing signals from peripheral neuronal receptors for cold and heat[3][5]. Fever occurs when various infectious and non-infectious processes interact with the host's defense mechanisms. Fever in most children is caused by a recognized microbiological agent and fever disappears after a short period [7][8][9].

Limit values or degrees of fever with measurements in various parts of the body as follows: axillary/axillary temperature above 37.2°C, oral/mouth temperature above 37.8°C, rectal/anus temperature above 38.0°C, forehead temperature above 38.0°C, the temperature in the ear membrane is above 38.0°C [10][12]. Meanwhile, it is said to have a high fever if the body temperature is above 39.5°C and hyperpyrexia if the temperature is above 41.1°C [13].

The most accurate measurement is to carefully place the tip of the thermometer in the anal canal or commonly called the rectum in children [14]. Four types of fever: a) Intermittent Fever Body temperature changes in regular intervals, between periods of fever and normal periods abnormally[21][22]. b) Remittent Fever There is a wide range of temperature fluctuations (more than 2°C) and the body temperature is above normal for 24 hours [15][16]. c) Recurrent Fever Short

febrile period of several days interspersed with periods of normal temperature of 1-2 days [17][18]. d) Constant Fever. Body temperature will fluctuate slightly, but above normal temperature[19][23]. Etiology of Fever Broadly speaking, there are two categories of fever that often affects children, namely non-infectious fever and infectious fever[20][24].

Jatropha leaves contain saponins, flavonoids such as kaempferol, nicotoflorine, quercitin, astragalin, ricinin and vitamin C [25]. One of the secondary metabolites that can be used as fever-reducing drugs is flavonoids[26]. Flavonoids exhibit more than a hundred different bioactivities. Bioactivity shown includes antipyretic, analgesic and anti-inflammatory effects [27].

## 2. LITERATURE REVIEW

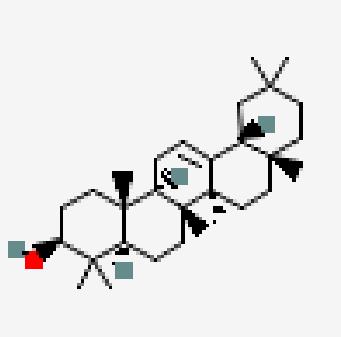
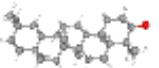
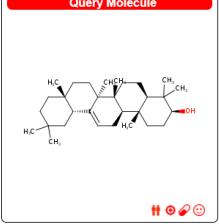
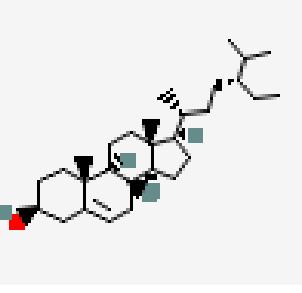
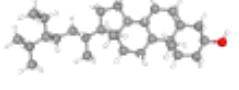
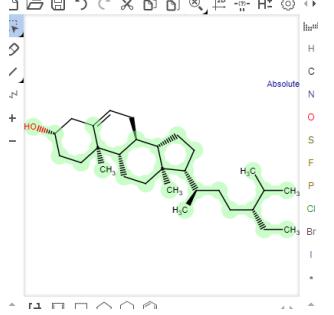
Fever or pyrexia is a symptom of a disease. The negative effects of fever include dehydration, lack of oxygen, nerve damage, and discomfort such as headaches, decreased appetite (anorexia), weakness, and muscle aches [28]. To reduce these negative effects, fever can be treated with antipyretics. An antipyretic drug that is often used to treat fever is paracetamol [29].

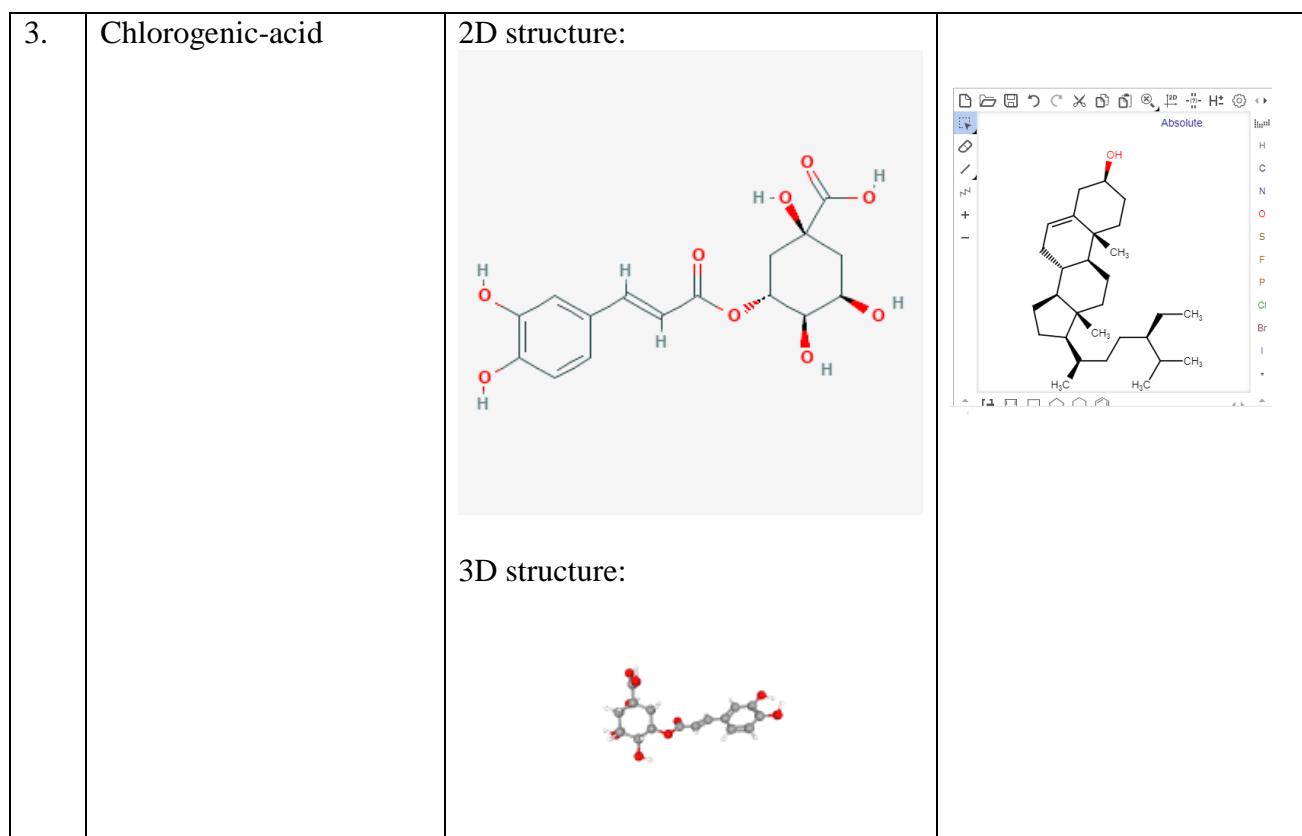
Several research results on paracetamol recently found that although it is quite safe, paracetamol has many side effects[11]. In addition, there is a possible similarity in the structure of paracetamol with flavonoids[4]. Because of the side effects that appear in long-term use of paracetamol and in large doses, it is necessary to think about alternative ways to reduce the appearance of these side effects, including through the use of traditional plants for fever therapy. Based on this description, jatropha leaves containing flavonoids are expected to have antipyretic activity that can reduce fever[30].

## 3. EXPERIMENTAL

### 3.1 Compound and protein target preparation

Flavonoid chemical compounds that refer to previous research. The compound samples were obtained from PubChem <https://pubchem.ncbi.nlm.nih.gov/>, from Phytochem <https://phytochem.nal.usda.gov/>, from Switzerland the target <http://swisstargetprediction.ch/>, from chemdraw and chem3d







### 3.2 Druglikeness analysis


Senayawa that we got earlier from Pubchem, earlier, was analyzed in the form of checking its structure and content through phtochem, Swiss target, chemdraw, and chem3d.

### 3.3 Stages

The chemical compounds from the Jatropha leaves, see the content and active compounds in the phytochem, in the phytochhem we will use the active sentawa in the leaves, which include flavonoids, the active compounds we got earlier we checked their structure, properties, and smiles through pubchem, swiss target, and chemdraw and chem3d applications

#### 4. RESULTS AND DISCUSSION

| No. | Active Compounds                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1.  | <p>Beta-Amyrin (Leaf)<br/>Analgesic</p> <p>Antiedemic IC<sub>27</sub> = 40 mg / kg ipr rat</p> <p>Antiinflammatory</p> <p>Antinociceptive</p> <p>Antiulcer</p> <p>Gastroprotective</p> <p>Hepatoprotective</p> <p>Larvicide</p> <p>Mosquitocide</p> | <p>2D structure:</p>  <p>3D structure:</p>        |    |
| 2.  | beta-Sitosterol (Root)                                                                                                                                                                                                                              | <p>2D structure::;</p>  <p>3D structure:</p>  |  |

**Picture 1.** Obtained Data

| Target                                                      | Common name | Uniprot ID |
|-------------------------------------------------------------|-------------|------------|
| Androgen Receptor                                           | AR          | P10275     |
| Protein-tyrosine phosphatase 1B                             | PTPN1       | P18031     |
| Estrogen receptor alpha                                     | ESR1        | P03372     |
| Muscarinic acetylcholine receptor M2                        | CHRM2       | P08172     |
| Acetylcholinesterase                                        | ACHE        | P22303     |
| Serotonin transporter                                       | SLC6A4      | P31645     |
| Cytochrome P450 2C19                                        | CYP2C19     | P33261     |
| Nuclear receptor subfamily 1 group I member 3 (by homology) | NR1I3       | Q14994     |
| Norepinephrine transporter                                  | SLC6A2      | P23975     |
| Cytochrome P450 19A1                                        | CYP19A1     | P11511     |
| Butyrylcholinesterase                                       | BCHE        | P06276     |
| HMG-CoA reductase                                           | HMGCR       | P04035     |
| Cytochrome P450 51 (by homology)                            | CYP51A1     | Q16850     |
| Niemann-Pick C1-like protein 1                              | NPC1L1      | Q9UHC9     |
| Sterol regulatory element-binding protein 2                 | SREBF2      | Q12772     |
| Estrogen receptor beta                                      | ESR2        | Q92731     |

**Picture 2.** The data obtained from Beta-Amyrin

| Target                                                      | Common name | Uniprot ID |
|-------------------------------------------------------------|-------------|------------|
| Niemann-Pick C1-like protein 1                              | NPC1L1      | Q9UHC9     |
| LXR-alpha                                                   | NR1H3       | Q13133     |
| The nuclear receptor ROR-gamma                              | RORC        | P51449     |
| HMG-CoA reductase                                           | HMGCR       | P04035     |
| Testis-specific androgen-binding protein                    | SHBG        | P04278     |
| Cytochrome P450 51 (by homology)                            | CYP51A1     | Q16850     |
| Cytochrome P450 17A1                                        | CYP17A1     | P05093     |
| Cytochrome P450 19A1                                        | CYP19A1     | P11511     |
| Sterol regulatory element-binding protein 2                 | SREBF2      | Q12772     |
| Androgen Receptor                                           | AR          | P10275     |
| The nuclear receptor ROR-alpha                              | RORA        | P35398     |
| Estrogen receptor alpha                                     | ESR1        | P03372     |
| Estrogen receptor beta                                      | ESR2        | Q92731     |
| Protein-tyrosine phosphatase 1B                             | PTPN1       | P18031     |
| Cytochrome P450 2C19                                        | CYP2C19     | P33261     |
| Norepinephrine transporter                                  | SLC6A2      | P23975     |
| Acetylcholinesterase                                        | ACHE        | P22303     |
| Corticosteroid binding globulin                             | SERPINA6    | P08185     |
| Glucose-6-phosphate 1-dehydrogenase                         | G6PD        | P11413     |
| Butyrylcholinesterase                                       | BCHE        | P06276     |
| Serotonin transporter                                       | SLC6A4      | P31645     |
| Muscarinic acetylcholine receptor M2                        | CHRM2       | P08172     |
| Nuclear receptor subfamily 1 group I member 3 (by homology) | NR1I3       | Q14994     |
| LXR-beta                                                    | NR1H2       | P55055     |
| Anti-estrogen binding site (AEBS) (by homology)             | DHCR7       | Q9UBM7     |
| Prostanoid EP1 receptor (by homology)                       | PTGER1      | P34995     |
| Prostanoid EP2 receptor (by homology)                       | PTGER2      | P43116     |
| Vitamin D receptors                                         | VDR         | P11473     |
| Thromboxane-A synthase                                      | TBXAS1      | P24557     |
| Prostaglandin E synthase                                    | PTGES       | O14684     |
| Peroxisome proliferator-activated receptor delta            | PPARD       | Q03181     |
| Carboxylesterase 2                                          | CES2        | O00748     |
| 11-beta-hydroxysteroid dehydrogenase 1                      | HSD11B1     | P28845     |
| Squalene monooxygenase                                      | SQL         | Q14534     |
| Protein-tyrosine phosphatase 1C                             | PTPN6       | P29350     |
| T-cell protein-tyrosine phosphatase                         | PTPN2       | P17706     |
| Glycine receptor alpha-1 subunit                            | GLRA1       | P23415     |
| Nitric oxide synthase, inducible (by homology)              | NOS2        | P35228     |

**Picture 3.** The data obtained from beta-sitosterol

| Target                                                      | Common name | Uniprot ID |
|-------------------------------------------------------------|-------------|------------|
| Niemann-Pick C1-like protein 1                              | NPC1L1      | Q9UHC9     |
| LXR-alpha                                                   | NR1H3       | Q13133     |
| The nuclear receptor ROR-gamma                              | RORC        | P51449     |
| HMG-CoA reductase                                           | HMGCR       | P04035     |
| Testis-specific androgen-binding protein                    | SHBG        | P04278     |
| Cytochrome P450 51 (by homology)                            | CYP51A1     | Q16850     |
| Cytochrome P450 17A1                                        | CYP17A1     | P05093     |
| Cytochrome P450 19A1                                        | CYP19A1     | P11511     |
| Sterol regulatory element-binding protein 2                 | SREBF2      | Q12772     |
| Androgen Receptor                                           | AR          | P10275     |
| The nuclear receptor ROR-alpha                              | RORA        | P35398     |
| Estrogen receptor alpha                                     | ESR1        | P03372     |
| Estrogen receptor beta                                      | ESR2        | Q92731     |
| Protein-tyrosine phosphatase 1B                             | PTPN1       | P18031     |
| Cytochrome P450 2C19                                        | CYP2C19     | P33261     |
| Norepinephrine transporter                                  | SLC6A2      | P23975     |
| Acetylcholinesterase                                        | ACHE        | P22303     |
| Corticosteroid binding globulin                             | SERPINA6    | P08185     |
| Glucose-6-phosphate 1-dehydrogenase                         | G6PD        | P11413     |
| Butyrylcholinesterase                                       | BCHE        | P06276     |
| Serotonin transporter                                       | SLC6A4      | P31645     |
| Muscarinic acetylcholine receptor M2                        | CHRM2       | P08172     |
| Nuclear receptor subfamily 1 group I member 3 (by homology) | NR1I3       | Q14994     |
| LXR-beta                                                    | NR1H2       | P55055     |
| Anti-estrogen binding site (AEBS) (by homology)             | DHCR7       | Q9UBM7     |
| Prostanoid EP1 receptor (by homology)                       | PTGER1      | P34995     |
| Prostanoid EP2 receptor (by homology)                       | PTGER2      | P43116     |
| Vitamin D receptors                                         | VDR         | P11473     |
| Thromboxane-A synthase                                      | TBXAS1      | P24557     |
| Prostaglandin E synthase                                    | PTGES       | O14684     |
| Peroxisome proliferator-activated receptor delta            | PPARD       | Q03181     |
| Carboxylesterase 2                                          | CES2        | O00748     |
| 11-beta-hydroxysteroid dehydrogenase 1                      | HSD11B1     | P28845     |
| Squalene monooxygenase                                      | SQLE        | Q14534     |
| Protein-tyrosine phosphatase 1C                             | PTPN6       | P29350     |
| T-cell protein-tyrosine phosphatase                         | PTPN2       | P17706     |
| Glycine receptor alpha-1 subunit                            | GLRA1       | P23415     |
| Nitric oxide synthase, inducible (by homology)              | NOS2        | P35228     |
| Peroxisome proliferator-activated receptor gamma            | PPARG       | P37231     |
| UDP-glucuronosyltransferase 2B7                             | UGT2B7      | P16662     |

|                                                          |           |               |
|----------------------------------------------------------|-----------|---------------|
| DNA polymerase beta (by homology)                        | POLB      | P06746        |
| Prolyl endopeptidase                                     | PREP      | P48147        |
| Dynamin-1                                                | DNM1      | Q05193        |
| Glucocorticoid receptor                                  | NR3C1     | P04150        |
| Prostanoid EP4 receptor (by homology)                    | PTGER4    | P35408        |
| Indoleamine 2,3-dioxygenase                              | IDO1      | P14902        |
| Smoothened homolog                                       | SMO       | Q99835        |
| Potassium-transporting ATPase alpha chain 2              | ATP12A    | P54707        |
| Prostanoid IP receptors                                  | PTGIR     | P43119        |
| p53-binding protein Mdm-2                                | MDM2      | Q00987        |
| Sigma opioid receptor                                    | SIGMAR1   | Q99720        |
| Anti-estrogen binding site (AEBS)                        | DHCR7 EBP | Q9UBM7 Q15125 |
| Isoprenylcysteine carboxyl methyltransferase             | ICMT      | O60725        |
| Fatty acid binding protein adipocyte                     | FABP4     | P15090        |
| Telomerase reverse transcriptase                         | TERT      | O14746        |
| Fatty acid binding muscle protein                        | FABP3     | P05413        |
| Epidermal fatty acid binding protein                     | FABP5     | Q01469        |
| Fatty acid-binding protein, liver                        | FABP1     | P07148        |
| Phosphodiesterase 4A                                     | PDE4A     | P27815        |
| Phosphodiesterase 4B                                     | PDE4B     | Q07343        |
| Phosphodiesterase 4C                                     | PDE4C     | Q08493        |
| 11-beta-hydroxysteroid dehydrogenase 2                   | HSD11B2   | P80365        |
| Dopamine transporter                                     | SLC6A3    | Q01959        |
| MAP kinase ERK1                                          | MAPK3     | P27361        |
| Beta protein kinase                                      | PRKCH     | P24723        |
| Protein-tyrosine phosphatase 2C                          | PTPN11    | Q06124        |
| Aldo-keto reductase family 1 member B10                  | AKR1B10   | O60218        |
| Methionine aminopeptidase 1                              | METAP1    | P53582        |
| Receptor-type tyrosine-protein phosphatase F (LAR)       | PTPRF     | P10586        |
| Phospholipase A2 group 1B                                | PLA2G1B   | P04054        |
| Low molecular weight phosphotyrosine protein phosphatase | ACP1      | P24666        |
| Dopamine D2 receptor                                     | DRD2      | P14416        |
| Sphingosine 1-phosphate receptor Edg-3                   | S1PR3     | Q99500        |
| Sphingosine 1-phosphate receptor Edg-1                   | S1PR1     | P21453        |
| CXC chemokine receptor type 3                            | CXCR3     | P49682        |
| Vitamin D-binding protein                                | GC        | P02774        |

**Picture 4.** The data obtained from Chlorogenic-acid

From the data we get, there are 3 active compounds contained in Jatropha leaves, the data above is data obtained from 3 different links, namely phytochem, pubchem, Swiss target prediction, and chemdraw and chem3d applications.

## 5. CONCLUSION

Jatropha leaves contain flavonoids which flavonoids contain antipyretic, analgesic and anti-inflammatory so it is very well used in treating fever and this jatropha leaf is safer than paracetamol.

## ACKNOWLEDGEMENTS

Authors may acknowledge to any person, institution or department that supported to any part of study.

## REFERENCES

- [1] Romanov, R. A., Tretiakov, E. O., Kastriti, M. E., Zupancic, M., Häring, M., Korchynska, S., ... & Harkany, T. (2020). Molecular design of hypothalamus development. *Nature*, 582(7811), 246-252.
- [2] Zhou, X., Zhong, S., Peng, H., Liu, J., Ding, W., Sun, L., ... & Wang, X. (2020). Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. *Nature communications*, 11(1), 1-16.
- [3] Kim, K., & Choe, H. K. (2019). Role of hypothalamus in aging and its underlying cellular mechanisms. *Mechanisms of ageing and development*, 177, 74-79.
- [4] Lovett-Barron, M., Chen, R., Bradbury, S., Andelman, A. S., Wagle, M., Guo, S., & Deisseroth, K. (2020). Multiple convergent hypothalamus–brainstem circuits drive defensive behavior. *Nature neuroscience*, 23(8), 959-967.
- [5] Billot, B., Bocchetta, M., Todd, E., Dalca, A. V., Rohrer, J. D., & Iglesias, J. E. (2020). Automated segmentation of the hypothalamus and associated subunits in brain MRI. *Neuroimage*, 223, 117287.
- [6] Young, P. J., Bellomo, R., Bernard, G. R., Niven, D. J., Schortgen, F., Saxena, M., ... & Weatherall, M. (2019). Fever control in critically ill adults. An individual patient data meta-analysis of randomised controlled trials. *Intensive care medicine*, 45(4), 468-476.
- [7] Wu, T. T., Lupi, K. E., Dube, K. M., & Devlin, J. W. (2021). You Give Me Fever: Is Dexmedetomidine (or Another Medication) the Cause?. *Critical Care Medicine*, 49(7), 1205-1207.
- [8] Guarner, J., & Hale, G. L. (2019, May). Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever. In *Seminars in diagnostic pathology* (Vol. 36, No. 3, pp. 170-176). WB Saunders.
- [9] Johannes, A., Weisskopf, P., Schulin, R., & Boivin, P. (2019). Soil structure quality indicators and their limit values. *Ecological indicators*, 104, 686-694.
- [10] Point, S. (2018). Blue light hazard: are exposure limit values protective enough for newborn infants. *Radioprotection*, 53(3), 219-224.
- [11] Giner-Santonja, G., Calvo, V. V., & Lepe, G. R. (2019). Application of AHP and corrective factors for the determination of best available techniques and emission limit values at installation level: A case study in four cement installations. *Science of the total environment*, 660, 834-840.
- [12] Stopa, R., Szyjewicz, D., Komarnicki, P., & Kuta, Ł. (2018). Limit values of impact energy determined from contours and surface pressure distribution of apples under impact loads. *Computers and Electronics in Agriculture*, 154, 1-9.
- [13] Chen, H. Y., Chen, A., & Chen, C. (2020). Investigation of the impact of infrared sensors on core body temperature monitoring by comparing measurement sites. *Sensors*, 20(10), 2885.
- [14] Bansal, G., Nushi, B., Kamar, E., Horvitz, E., & Weld, D. S. (2021, May). Is the most accurate ai the best teammate? optimizing ai for teamwork. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 35, No. 13, pp. 11405-11414).

[15] Helgesson, G., Ernstsson, O., Åström, M., & Burström, K. (2020). Whom should we ask? A systematic literature review of the arguments regarding the most accurate source of information for valuation of health states. *Quality of Life Research*, 29(6), 1465-1482.

[16] Gimenez, T., Tedesco, T. K., Janoian, F., Braga, M. M., Raggio, D. P., Deery, C., ... & Mendes, F. M. (2021). What is the most accurate method for detecting caries lesions? A systematic review. *Community Dentistry and Oral Epidemiology*, 49(3), 216-224.

[17] De Benedetti, F., Gattorno, M., Anton, J., Ben-Chetrit, E., Frenkel, J., Hoffman, H. M., ... & Junge, G. (2018). Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. *New England Journal of Medicine*, 378(20), 1908-1919.

[18] Dingulu, G., Georgin-Lavialle, S., Koné-Paut, I., Pillet, P., Pagnier, A., Merlin, E., ... & Hentgen, V. (2020). Validation of the new classification criteria for hereditary recurrent fever in an independent cohort: experience from the JIR Cohort Database. *Rheumatology*, 59(10), 2947-2952.

[19] Fujimoto, K., Hidaka, Y., Koga, T., Kaieda, S., Yamasaki, S., Nakashima, M., ... & Ida, H. (2021). MEFV E148Q variant is more associated with familial Mediterranean fever when combined with other non-exon 10 MEFV variants in Japanese patients with recurrent fever. *Modern Rheumatology*, 31(6), 1208-1214.

[20] Wright, W. F., Simner, P. J., Carroll, K. C., & Auwaerter, P. G. (2021). Progress report: next-generation sequencing (NGS), multiplex polymerase chain reaction (PCR), and broad-range molecular assays as diagnostic tools for fever of unknown origin (FUO) investigations in adults. *Clinical Infectious Diseases*.

[21] Zainul, R. (2016). Effect of Temperature and Particle Motion against the ability of ZnO Semiconductor Photocatalyst in Humic Acid. *Der Pharmacia Lettre*, 15(8), 120-124.

[22] Zainul, R. (2015). Design of photovoltaic cell with copper oxide electrode by using indoor lights. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 6(4), 353-361.

[23] Zainul, R., Oktavia, B., Dewata, I., & Efendi, J. (2018, April). Thermal and Surface Evaluation on The Process of Forming a Cu<sub>2</sub>O/CuO Semiconductor Photocatalyst on a Thin Copper Plate. In *IOP Conference Series: Materials Science and Engineering* (Vol. 335, No. 1, p. 012039). IOP Publishing.

[24] Ahmad, M. S., Isa, I. M., Hashim, N., Saidin, M. I., Suyanta, S., Zainul, R., ... & Mukdasar, S. (2019). Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb modified multiwalled carbon nanotubes as sensor for electrochemical determination of dopamine in alkaline medium. *International Journal of ELECTROCHEMICAL SCIENCE*, 14, 9080-9091.

[25] Zainul, R. (2016). Design and Modification of Copper Oxide Electrodes for Improving Conversion Coefficient Indoors Lights (PV-Cell) Photocells. *Der Pharma Chemica*, 8(19), 338-395.

[26] Zainul, R. (2016). Determination of the half-life and the quantum yield of ZnO semiconductor photocatalyst in humic acid. *Der Pharmacia Lettre*, 15(8), 176-179.

[27] Mawardi, M., Sanjaya, H., & Zainul, R. (2015). Characterization of Napa soil and adsorption of Pb (II) from aqueous solutions using on column method. *Journal of Chemical and Pharmaceutical Research*, 12(7), 905-912.

[28] Zainul, R., Oktavia, B., Dewata, I., & Efendi, J. (2018, April). Thermal and Surface Evaluation on The Process of Forming a Cu<sub>2</sub>O/CuO Semiconductor Photocatalyst on a Thin Copper Plate. In *IOP Conference Series: Materials Science and Engineering* (Vol. 335, No. 1, p. 012039). IOP Publishing.

[29] Sharif, S. N. M., Hashim, N., Isa, I. M., Bakar, S. A., Saidin, M. I., Ahmad, M. S., ... & Kamari, A. (2021). The effect of swellable carboxymethyl cellulose coating on the physicochemical stability and release profile of a zinc hydroxide nitrate-sodium dodecylsulphate-imidacloprid. *Chemical Physics Impact*, 2, 100017.

[30] Nurashikin, A. A., Isa, I. M., Hashim, N., Ahmad, M. S., Zainul, R., Siti, N. A. M. Y., ... & Mukdasai, S. (2020). Synergistic Effect of Zinc/Aluminium-Layered Double Hydroxide-Clopyralid Carbon Nanotubes Paste Electrode in the Electrochemical Response of Dopamine, Acetaminophen, and Bisphenol A. *International Journal of Electrochemical Science*, 15(8), 9088-9107.