TEMPERATURE AND PH OPTIMIZATION OF CAR THERMOPHILIC BACTERIA FOR THE PRODUCTION OF XILANASE THE BLEACHING OF ENVIRONMENTALLY FRIENDLY INKED PAPER

Oktovera Selly,Irdawati^{a*}, Dewi Rahma Putri^b, Jannah Khoftiah^c, Putri Berlian Fauzi^dArizona^e.

a, b, cDepartment of Biology , Faculty of Math and Science, Universitas Negeri Padang, Air Tawar Barat Padang Utara West Sumatera, Indonesia, 25171 Indonesia
 dDepartment of Chemistry , Faculty of Math and Science, Universitas Negeri Padang, Air Tawar Barat Padang Utara West Sumatera, Indonesia, 25171 Indonesia
 eMagister Programme of Educational Chemistry , Faculty of Math and Science, Universitas Negeri Padang, Air Tawar Barat Padang Utara West Sumatera, Indonesia, 25171 Indonesia

*Coresponding email : irdawati.amor40@gmail.com

ABSTRACT

Xylanase is an extracellular enzyme capable of hydrolyzing hemicellulose so that it can convert xylan into xylose. Xylanase enzymes can be used in the pulp and paper industry. This study aims to determine the effect of temperature, pH on enzyme production by immobilized thermophilic bacteria using rice straw xylan extract as a substrate and to see the effect of xylanase administration on the whiteness level of inked paper waste. This study was an experimental study and used a completely randomized design (CRD). Enzyme activity was measured using a spectrophotometer at a wavelength of 540 nm. Enzyme activity data were analyzed using the ANOVA test and continued with the DMRT (Duncan Multiple Range Test) further test with a level of 5% and the whiteness of the paper was determined by testing the kappa number. The results obtained were that the temperature of immobilize thermophilic bacteria using rice straw xylan extract as a substrate affected the xylanase enzyme activity with an optimum temperature of 75°C having the highest average value of enzyme activity 4.668 U/mL. Meanwhile, the optimum pH for immobilized thermophilic bacteria to produce xylanase was pH 8.5 with the highest average value of enzyme activity 4.854 U/mL. The addition of xylanase enzyme in the fermentation process of inked paper waste was able to increase the brightness of the inked paper with a lower average value of kappa number of 2.762 compared to the higher control of 5.525.

Keywords: Thermophilic Bacteria, Inked Paper, pH, Temperature, Xylanase

1. INTRODUCTION

Paper is a thin and flat material which is usually made of wood with a fiber content of 39% (Asngad et al., 2016). According to the Ministry of Industry of the Republic of Indonesia (2015) the amount of paper production in Indonesia reaches 10.4 million tons per year and is ranked sixth in the world. The increase in paper production has an unfavorable impact on the environment. Bahri's research (2015) states that until now the main raw material for pulp that is widely used is wood. As a result, deforestation is becoming more widespread. An alternative to overcome this problem is to reuse used paper as paper raw material. Waste paper that has undergone processing is a fiber raw material known as secondary fiber (Rismijana et al., 2003).

To make white writing paper by obtaining fibers from the type of waste paper that contains ink, it is usually done through a deinking process. Deinking is the process of removing ink from fibers (Rismijana et al., 2006). Conventional deinking is done by adding chemicals such as sodium hydroxide, sodium silicate and hydrogen peroxide to help the ink release (Wirawan et al., 2008). Using these chemicals will produce chemical waste that has an impact on environmental pollution (Rismijana et al., 2003). To avoid environmental damage caused by paper bleaching chemicals, enzymes can be used as substitutes in environmentally friendly paper bleaching, the process of releasing ink on paper using enzymes is also called Biodeinking (Hader et al., 2013). One of the enzymes that is widely used is the xylanase enzyme (Takhur et al., 2012).

Xylanase is an enzyme capable of hydrolyzing xylan into xyloologosaccharides and xylose (Susilowati et al., 2012). Xylanase has a major role in industry, one of which is in the pulp and paper industry (Sharma et al. 2014). In the pulp and paper industry, xylanase enzymes can change the fiber structure by breaking the xylose-xylose bonds in the xylan chain (Beg et al., 2001).

Xylan is commonly found in lignocellulosic agricultural wastes (hemicellulose, cellulose, and lignin) such as rice straw, rice bran, wheat bran, corn cobs and bagasse (Utarti and Siswanto, 2018). Soffiyyana's research (2020) stated that the enzyme activity contained in the xylan substrate extracted from rice straw was 6.033 U/mL. When compared with other alternative substrates, using rice straw xylan extract as a substrate has a higher activity than rice husk xylan extract with an enzyme activity of 5.677 U/mL and corn cobs with an enzyme activity of 5.785 U/mL.

2. LITERATURE REVIEW

Enzyme assay:

Xylanase activity was assayed by measuring the release of reducing sugar from beechwood xylan following the dinitrosalicylic acid (DNS) method (Miller 1959). To 1.8~mL of substrate in phosphate buffer, pH 6.5, 0.4~mL of culture supernatant was added and incubated at 90° . After 10~min, 2.0~mL of DNS solution was added to the reaction mixture and boiled for 10~min. Absorbance was measured at 540~nm against a reagent blank. One unit of xylanase activity was defined as the amount of enzyme that released $1~\text{\mu}$ mol reducing sugar equivalent to xylose per min under the above assay conditions.

Effect of pH on activity and stability of xylanase:

Effect of pH on the activity of xylanases was measured by incubating 0.4 mL of enzyme and 1.8 mL of buffers, adjusted to pH of 5.5 to 8.5, containing beechwood xylan (0.5%). The buffers used were:sodium acetate buffer, pH 5.5; phosphate buffer, pH 6.0 – 8.0; Tris-HCl buffer, pH 8.5. Stability of the enzyme at different pH values was also studied by incubating the enzyme at various pH values ranging from 5.5 - 8.5 for 24 hours at 25° C and then estimating the residual activity.

Effect of temperature on activity and stability of xylanase:

The effect of temperature on the enzyme activity was determined by performing the standard assay procedure as mentionated earlier for 10 min at pH 6.5 within a temperature range of $40-100^{\circ}$ C. Thermostability was determined by incubation of crude enzyme at temperatures ranging from $40-100^{\circ}$ C for 2 hours. Aftertreatment the residual enzyme activities were assayed.

Effect of inhibitors

Various metals (1 mM) and others reagents (1 mM) were added to the standard enzymatic reaction mixture in order to study their effect on xylanase and β -xylosidase activities.

Method

1. Type of Research

This type of research is experimental research.

2. Time and Place of Research

This research was conducted in May 2021 - August 2021 at the Microbiology Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Padang State University.

3. Tools and Materials

The tools used in this research are: test tube, test tube rack, beaker glass, Erlenmeyer tube, measuring cup, Bunsen lamp, spatula, electric stove (hot plate), vortex, stirer, digital scale, inoculation needle, drill glass, spatula, incubator, oven, filter paper, pH meter, dropper pipette, autoclave, centrivuge, sheker incubator, spectrophotometer, cooling, refrigerator, petridish.

The materials used in this study were SSA2 Sapan Sungai Aro Solok Selatan bacterial isolate (Irdawati et al., 2018) from the Microbiology Laboratory, inked paper waste, Medium Nutrient Agar (NA), Gellum gum, xylan, Dinitrosalicylic Acid (DNS), Medium Beechwood Xilan, 0.3% straw extract, Bactereological Peptone, gauze, cotton, aquades, tissue, 70% alcohol, Yeast Extract, K2HPO4, MgSO47H2O, CaCl 0.2 M, H2SO4, Na2S2O3, KMNO4, 1% starch and KI 10%.

4. Research Design

The research design used was a randomized block design (CRD) with the following parameters variation of temperature with 7 treatments and 3 replications and variation of pH with 6 treatments and 3 replications. Application of xylanase with optimum

TEMPERATURE AND PH OPTIMIZATION OF CAR THERMOPHILIC BACTERIA FOR THE PRODUCTION OF XILANASE THE BLEACHING OF ENVIRONMENTALLY FRIENDLY INKED PAPER WASTE

temperature and pH on inked paper waste with 2 treatments and 2 replications, control (inked paper waste without xylanase enzyme), and waste paper is inked with xylanase enzymes produced at optimum temperature and pH

5. Research Procedure

Tools and materials were sterilized using an auloclave at a temperature of 121°C and a pressure of 15 psi for 15 minutes. The straw was washed and dried, after being half dry, then it was oven-dried at 50°C for 7 days. After the straw is dry, it is broken, then it is blended and the powder is obtained which will be used as a substrate. The powder from the prepared rice straw was weighed 50 g and then put into a glass beaker and soaked with 1% NaOCl for 5 hours at 28°C. After that, it was rinsed and filtered and then immersed in 10% NaOH solution at 28°C for 24 hours. Centrifugation of the obtained filtrate at 4000 rpm for 30 minutes. The liquid (supernatant) from the centrifugation was neutralized with 6N HCL to be centrifuged again at 4000 rpm for 30 minutes. The resulting supernatant already contains xylan, to separate the soluble xylan by adding 95% ethanol and centrifuging at 4000 rpm for 30 minutes (Richana, 2007).

For the regeneration of bacterial isolates, a medium of NA was made by weighing 20 grams of NA (plus 3 g of Gellan gum in 1000 mL of NA) then put into a beaker glass and added with distilled water until the volume became 1000 mL. The mixture is heated to boiling and then put into an Erlenmeyer and tightly covered with cotton and aluminum foil. The medium was sterilized using an autoclave at 121°C at 15 psi pressure for 15 minutes.

The medium for growing xylanase-producing bacteria is using Beechwood medium with a composition of 0.5% polypeptone, 0.1% yeast extract, K2HPO4, 0.02% MgSO47H2O, and 0.3% straw extract (Sofiyyana, 2020). Dissolved in 1000 mL of distilled water with a pH of 8. Then heated until homogeneous and sterilized in an autoclave at a temperature of 121°C and a pressure of 15 psi for 15 minutes.

3. EXPERIMENTAL

Tabel 1. Average of xilanase activity at some temperature of bacteria thermofilik amobil isolat SSA2

NO	Temperature (°C)	Average Xylanase (U/mL)
1	50	4,222 ^{ab}
2	55	4,109 ^a
3	60	4,442 ^{bc}
4	65	4,651 ^c
5	70	4,629 ^c
6	75	4,668 ^c
7	80	4,566 ^c

Note: Numbers followed by the same letter are not significantly different at =5% according to the DMRT test.

NO	pН	Average Xylanase (U/mL)	
1	7,5	3,708	
2	8,0	3,872	
3	8,5	4,854	
4	9,0	4,114	
5	9,5	3,759	
6	10,0	3,747	

Table 2. The average value of xylanase activity in several pH. treatments

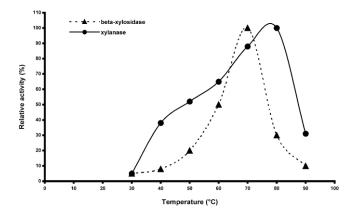


Figure 2. Effect of temperature (a) and pH (b) on purified xylanase and β -xylosidase activities from *B. thermantarcticus*. The values were obtained from at least three determinations in standard assay conditions.

4. RESULTS AND DISCUSSION

Temperature Optimization of Immobilized Thermophilic Bacteria for Xylanase Enzyme Production. Table 1 shows the results of the analysis that the temperature treatment of immobilized thermophilic bacteria 50°C, 55°C, 60°C, 65°C, 70°C, 75°C and 80°C showed significant differences with the highest average value of xylanase enzyme activity at 75°C treatment, which was 4,668 U/mL. The temperature treatment of 55°C resulted in the lowest average xylanase enzyme activity, which was 4.109 U/mL. Based on the results of the ANOVA, the results obtained were calculated F (6.907) > F table (3.00). This shows that there is a significant effect on the activity of the xylanase enzyme. Therefore, further test of DMRT was carried out.

pH Optimization of Immobilized Thermophilic Bacteria for Xylanase Enzyme Production

Based on the results of this study, pH 7.5 produced the lowest average enzyme activity, which was 3.708 U/mL. Enzyme activity continued to increase up to pH 8.5 which resulted in the highest average activity value of 4.854 U/mL. However, the enzyme activity again decreased at pH 9.0 and continued to decrease until pH 10.0 which had an enzyme activity value of 3.747 U/mL as can be seen in Table 2. The results of the TEMPERATURE AND PH OPTIMIZATION OF CAR THERMOPHILIC BACTERIA FOR THE PRODUCTION OF XILANASE THE BLEACHING OF ENVIRONMENTALLY FRIENDLY INKED PAPER WASTE

ANOVA test obtained F count (2,591) < F table (3.11). This shows that there is no significant difference from the results of the tests carried out at pH 7.5, 8.0, 8.5, 9.0, 9.5 and 10.0. Therefore, no further DMRT test was conducted.

Kappa Number Test on Inked Paper Waste

Based on Table 3, when viewed from the kappa number value, paper plus xylanase enzyme produced by immobilized thermophilic bacteria isolate SSA2 had a lower kappa number value of 2.762 compared to the control treatment (paper without enzymes) with a kappa number value of 5.525. Therefore, the xylanase enzyme can be used as a bleaching agent for inked paper waste to reduce the use of chlorine which is harmful to the environment, this is due to the ability of the xylanase enzyme to reduce the kappa number so that it can increase the brightness of the inked paper waste.

Xylanase enzymes play a role in breaking the xylose-xylose bonds in the xylan chain, breaking the bonds between the remaining lignin and carbohydrates. This means that xylanase acts as an enzyme that promotes lignin transfer during the paper bleaching process (Bajpai et al., 2004). The ability of xylanase to break the xylose-silose bonds in the xylan chain will also help to release the bonds between the ink and the paper fibers so as to increase the whiteness of the inked paper waste.

Maximum enzyme activity will increase the whiteness of the paper and reduce the kappa number. According to Irdawati et al., (2020) the use of optimum temperature is able to produce the highest enzyme activity which causes maximum xylanase enzyme production so that the brightness of the pulp in pulp fermentation is also higher as evidenced by the low kappa number obtained, which is 1.031 compared to the temperature treatment (50°C, 55°C)., 60°C, 65°C) with a kappa number value of 1.842; 2,799; 1,031; 2,394.

The use of xylanase is generally carried out before the bleaching process with bleaching chemicals (Martin et al., 2012). Xylanase will reduce the consumption of bleaching chemicals, so it can reduce the release of organochlorine compounds into the environment (Cheng et al., 2013). Research by Khonzue et al., (2011) states that xylanase can reduce the consumption of bleach by 20% to get the same brightness value compared to without the enzyme.

5. CONCLUSION

The temperature of thermophilic bacteria using rice straw xylan extract as a substrate affects the activity of the xylanase enzyme. With the highest average value of enzyme activity that is 4,668 U/mL at 75°C and the lowest concentration at 55°C is 4,109 U/mL. The optimum pH of immobilized thermophilic bacteria SSA2 isolate in producing xylanase enzyme was pH 8.5 with the highest enzyme activity of 4.854 U/mL. The application of maximum xylanase enzyme in the fermentation of inked paper waste can increase the whiteness level of inked paper waste as evidenced by the low average value of kappa number, which is 2,762 compared to control which has an average value of 5,525 kappa number.

ACKNOWLEDGEMENTS

The author's thanks go to:

Mrs. Dr. irdawati, M. Si, as a mentor who has given time and energy to guide the author during the research activities.

PKM team colleagues who have collaborated to complete this research activity to completion.

REFERENCES

- [1] Liu, Z., Shao, T., Li, Y., Wu, B., Jia, H., & Hao, N. Expression, Characterization and Its Deinking Potential of a Thermostable Xylanase From Planomicrobium glaciei CHR43. *Frontiers in bioengineering and biotechnology*, 2021, *9*, 76. https://doi.org/10.3389/fbioe.2021.618979
- [2] Sango, C., Pathak, P., Bhardwaj, N. K., Dalal, S., & Sharma, J. Partial purification of bacterial cellulo-xylanolytic enzymes and their application in deinking of photocopier waste paper. *Environmental Science and Pollution Research*, 2021, 28(43), 61317-61328. https://doi.org/10.1007/s11356-021-14709-5
- [3] Mohd Yazid, S. N. A., Md Isa, I., Ali, N. M., Hashim, N., Saidin, M. I., Ahmad, M. S., ... & Zainul, R. Graphene/iridium (III) dimer complex composite modified glassy carbon electrode as selective electrochemical sensor for determination of hydroquinone in real-life water samples. *International Journal of Environmental Analytical Chemistry*, 2020, 1-18. https://doi.org/10.1080/03067319.2020.1758079
- [4] Kharisma, V. D., Ansori, A. N. M., Dian, F. A., Rizky, W. C., Dings, T. G. A., Zainul, R., & Nugraha, A. P. MOLECULAR DOCKING AND DYNAMIC SIMULATION OF ENTRY INHIBITOR FROM TAMARINDUS INDICA BIOACTIVE COMPOUNDS AGAINST SARS-COV-2 INFECTION VIA VIROINFORMATICS STUDY. *Biochemical and Cellular Archives*, 2021, 3323-3327.https://connectjournals.com/03896.2021.21.3323
- [5] Mohd Sharif, S. N., Hashim, N., Md Isa, I., Abu Bakar, S., Idris Saidin, M., Syahrizal Ahmad, M., ... & Zainul, R. Carboxymethyl Cellulose Hydrogel Based Formulations of Zinc Hydroxide Nitrate-Sodium Dodecylsulphate-Bispyribac Nanocomposite: Advancements in Controlled Release Formulation of Herbicide. *Journal of nanoscience and nanotechnology*, 2020, 21(12), 5867-5880. https://doi.org/10.1166/jnn.2021.19499
- [6] Pramananda, V., Fityay, T. A. H., & Misran, E. Anthocyanin as natural dye in DSSC fabrication: A review. In *IOP Conference Series: Materials Science and Engineering, 2021*, (Vol. 1122, No. 1, p. 012104). IOP Publishing. https://iopscience.iop.org/journal/1757-899X.
- [7] Singh, B. Production, characteristics, and biotechnological applications of microbial xylanases. *Applied microbiology and biotechnology*, 2019, *103*(21), 8763-8784. https://doi.org/10.1007/s00253-019-10108-6
- [8] Sveinsdottir, M., Baldursson, S. R. B., & Örlygsson, J. Ethanol production from monosugars and lignocellulosic biomass by thermophilic bacteria isolated from Icelandic hot springs, 2009.
- [9] Kumar, V., & Satyanarayana, T. Production of endoxylanase with enhanced thermostability by a novel polyextremophilic Bacillus halodurans TSEV1 and its

TEMPERATURE AND PH OPTIMIZATION OF CAR THERMOPHILIC BACTERIA FOR THE PRODUCTION OF XILANASE THE BLEACHING OF ENVIRONMENTALLY FRIENDLY INKED PAPER WASTE

- applicability in waste paper deinking. *Process Biochemistry*, 2014, 49(3), 386-394. https://doi.org/10.1016/j.procbio.2013.12.005
- [10] Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap, P. L., & Srivastava, A. K. Bacterial xylanases: biology to biotechnology. 2016, *3 Biotech*, 6(2), 1-15. https://doi.org/10.1007/s13205-016-0457-z
- [11] Bajaj, P., & Mahajan, R. Cellulase and xylanase synergism in industrial biotechnology. *Applied microbiology and biotechnology*, 2019, *103*(21), 8711-8724. https://doi.org/10.1007/s00253-019-10146-0
- [12] Thomas, L., Ushasree, M. V., & Pandey, A. An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency. *Bioresource technology*, 2014, *165*, 309-313. https://doi.org/10.1016/j.biortech.2014.03.037
- [13] Maity, C., Ghosh, K., Halder, S. K., Jana, A., Adak, A., Das Mohapatra, P. K., ... & Mondal, K. C. (2012). Xylanase isozymes from the newly isolated Bacillus sp. CKBx1D and optimization of its deinking potentiality. *Applied biochemistry and biotechnology*, *167*(5), 1208-1219. https://doi.org/10.1007/s12010-012-9556-4
- [14] Verma, D., Kumar, R., & Satyanarayana, T. Diversity in xylan-degrading prokaryotes and xylanolytic enzymes and their bioprospects. In *Microbial diversity in ecosystem sustainability and biotechnological applications*, 2019, (pp. 325-373). Springer, Singapore.
- [15] Bhardwaj, N., Kumar, B., & Verma, P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. *Bioresources and Bioprocessing*, 2019, 6(1), 1-36. https://doi.org/10.1186/s40643-019-0276-2
- [16] Menon, G., Mody, K., Keshri, J., & Jha, B. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. *Biotechnology and Bioprocess Engineering*, 2010, *15*(6), 998-1005. https://doi.org/10.1007/s12257-010-0116-x
- [17] Pérez, J., Munoz-Dorado, J., De la Rubia, T. D. L. R., & Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. *International microbiology*, 2002, 5(2), 53-63. https://doi.org/10.1007/s10123-002-0062-3
- [18] Ng, I. S., Li, C. W., Yeh, Y. F., Chen, P. T., Chir, J. L., Ma, C. H., ... & Tong, C. G. A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. *Extremophiles*, 2009, *13*(3), 425-435. https://doi.org/10.1007/s00792-009-0228-4
- [19] Collins, T., Gerday, C., & Feller, G. Xylanases, xylanase families and extremophilic xylanases. *FEMS microbiology reviews*, 2005, 29(1), 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- [20] Charest, M. H., Antoun, H., & Beauchamp, C. J. Dynamics of water-soluble carbon substances and microbial populations during the composting of de-inking paper sludge. *Bioresource Technology*, 2004, *91*(1), 53-67. https://doi.org/10.1016/S0960-8524(03)00155-X
- [21] Soni, R., Nazir, A., & Chadha, B. S. Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. *Industrial Crops and Products*, 2010, 31(2), 277-283. https://doi.org/10.1016/j.indcrop.2009.11.007

- [22] Sapre, M. P., Jha, H., & Patil, M. B. Purification and characterization of a thermoalkalophilic xylanase from Bacillus sp. *World Journal of Microbiology and Biotechnology*, 2005, 21(5), 649-654. https://doi.org/10.1007/s11274-004-3569-2
- [23] Virk, A. P., Puri, M., Gupta, V., Capalash, N., & Sharma, P. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. *PLoS One*, 2013, 8(8), e72346. https://doi.org/10.1371/journal.pone.0072346
- [24] Nam, E.S. β-galactosidase gene of Thermus thermophulus KNOUC11 isolated from hot springs of a volcanie area in New Zealand: identification of the bacteria cloning and expression of the gene in Escherchia coli. *Asian-Aus Journal Animal Science*, 2004, 17(11), 1591–1598. DOI: https://doi.org/10.5713/ajas.2004.1591
- [25] Sharma, R., Chisti, Y., and Banerjee, U. C. Production, purification, characterization, and applications of lipases. *Biotechnology Advances*, 2001. https://doi.org/10.1016/S0734-9750(01)00086-6
- [26] Chutani, P., & Sharma, K. K. Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. *Carbohydrate polymers*, 2015, *127*, 54-63. https://doi.org/10.1016/j.carbpol.2015.03.053
- [27] Desai, D. I., & Iyer, B. D. Biodeinking of old newspaper pulp using a cellulase-free xylanase preparation of Aspergillus niger DX-23. *Biocatalysis and Agricultural Biotechnology*, 2005, *5*, 78-85. https://doi.org/10.1016/j.bcab.2015.11.001
- [28] Muthezhilan, R., Ashok, R., & Jayalakshmi, S. Production and optimization of thermostable alkaline xylanase by Penicillium oxalicum in solid state fermentation. *African Journal of Microbiology Research*, 2007, *1*(2), 20-28. https://doi.org/10.5897/AJMR.9000593
- [29] Singh, S., Madlala, A. M., & Prior, B. A. (2003). Thermomyces lanuginosus: properties of strains and their hemicellulases. *FEMS Microbiology Reviews*, 27(1), 3-16. https://doi.org/10.1016/S0168-6445(03)00018-4
- [30] Hartanti, L., Rohman, A., Suwandi, A., Dijkstra, B. W., Nurahman, Z., & Puspaningsih, N. N. T. Mutation analysis of the pKa modulator residue in β-D-xylosidase from Geobacillus Thermoleovorans IT-08: activity adaptation to alkaline and high-temperature conditions. *Procedia Chemistry*, 20`6, 18, 39-48. https://doi.org/10.1016/j.proche.2016.01.008